首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112850篇
  免费   6690篇
  国内免费   5445篇
化学   50388篇
晶体学   1181篇
力学   8635篇
综合类   380篇
数学   36448篇
物理学   27953篇
  2023年   676篇
  2022年   714篇
  2021年   1060篇
  2020年   1485篇
  2019年   1409篇
  2018年   11368篇
  2017年   11118篇
  2016年   7746篇
  2015年   2604篇
  2014年   2464篇
  2013年   3125篇
  2012年   6965篇
  2011年   13703篇
  2010年   8012篇
  2009年   8227篇
  2008年   9107篇
  2007年   10870篇
  2006年   2250篇
  2005年   3020篇
  2004年   3007篇
  2003年   3229篇
  2002年   2439篇
  2001年   1395篇
  2000年   1166篇
  1999年   944篇
  1998年   777篇
  1997年   637篇
  1996年   734篇
  1995年   589篇
  1994年   477篇
  1993年   425篇
  1992年   337篇
  1991年   335篇
  1990年   236篇
  1989年   223篇
  1988年   164篇
  1987年   159篇
  1986年   172篇
  1985年   134篇
  1984年   92篇
  1983年   78篇
  1982年   66篇
  1981年   65篇
  1980年   60篇
  1979年   59篇
  1978年   45篇
  1914年   45篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 26 毫秒
71.
Semiconductor photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but its efficiency is severely restricted by the rapid recombination of charge carriers in the bulk phase and on the surface of photocatalysts. Polarization has emerged as one of the most effective strategies for addressing the above‐mentioned issues, thus effectively promoting photocatalysis. This review summarizes the recent advances on improvements of photocatalytic activity by polarization‐promoted bulk and surface charge separation. Highlighted is the recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, and the related mechanisms. Finally, the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.  相似文献   
72.

This paper presents the stabilization effects of inorganic filler, cerium-doped lead zirconate titanate on high-density polyethylene. The filler was loaded in two concentrations (1 and 3 wt%). The dopant contents in PbZrO3 were 0, 0.05, 0.075, 0.1 and 0.125 mol%. The degradation of hybrid samples was accomplished by γ-irradiation at various doses up to 200 kGy. The isothermal and nonisothermal chemiluminescence (CL) and thermal analysis (TG-DSC) were applied for the thermal stability characterization of modified HDPE samples. The mechanistic considerations and radiochemical consequences caused by the variation of filler concentration and doping level are discussed. The results demonstrate that the filler acts efficiently as stabilizer at low concentration of additive when the lower filler amount is present. The start of degradation precedes melting by four processes through which the chain scission and radical oxidation represent the essential degradation stage. The filler concentration influences the degradation due to the intimate interaction between solid-state defects and free radicals. The polymer protection against oxidation is based on the scavenging of radicals by the doping elements, that is, they trap and block radicals delaying material aging. The present results open a new perspective in the quality amelioration of organic products toward high durability.

  相似文献   
73.
Cu‐doped Ni‐based metal–organic frameworks (MOFs) nanomaterials fabricated through a one‐pot hydrothermal reaction were characterized, and their performance as supercapacitor electrode materials was further studied for the first time. The results indicated that the doping of foreign metals and the introduction of K3[Fe(CN)6] in the KOH electrolyte significantly improve the performance of the supercapacitor. The results indicated that the Ni2.6Cu0.4 MOFs material shows the highest specific capacitance (1282 F g?1 at 1 A g?1 in mixed 2 M KOH and 0.1 M K3[Fe(CN)6]) and optimal capacitance retention (85.7% after 2000 cycles). This work provides a feasible optimization strategy for the construction of MOFs‐based supercapacitor electrode materials with excellent performance, and also provides a reliable experimental and theoretical basis for practical industrial production.  相似文献   
74.
Fifteen organometallic Ir(III) half‐sandwich complexes ( 1A – 5C ) having the general formula [(η5‐Cpx)Ir(N^N)Cl]PF6 (Cpx = Cp*, tetramethyl(phenyl)cyclopentadienyl (Cpxph) or tetramethyl(biphenyl)cyclopentadienyl (Cpxbiph); N^N = diamine) have been synthesized and characterized. The molecular structure of 1A was determined using single‐crystal X‐ray diffraction analysis. The hydrolysis of 1A – 5C was monitored using UV–visible spectra. Complexes 3A – 3C showed catalytic activity for the oxidation of NADH to NAD+, where 3C showed the highest turnover number of 29.9 within 450 min. Cytotoxicity examination by MTT assay was carried out against two human cancer cell lines (HeLa and A549) after 24 or 48 h drug treatment. The complexes showed high potency, where the most potent complex ( 3C ; IC50 = 3.4 μM) was six times more active than cisplatin against A549 cells after 24 h drug exposure. Cytotoxic potency towards A549 cells increased with phenyl substitution on Cp ring: Cpxbiph > Cpxph > Cp*. In addition, the biological studies showed that 3C caused cell apoptosis and cell cycle arrest at G1 phase in A549 cancer cells. Moreover, 3C increased the level of reactive oxygen species markedly after 24 h, which may provide an important basis for killing cancer cells. Confocal laser scanning microscopy was used to track 3C in A549 cells. The cellular localization experiment showed that 3C targeted lysosomes and caused lysosomal damage.  相似文献   
75.
The radius of spatial analyticity for solutions of the KdV equation is studied. It is shown that the analyticity radius does not decay faster than t?1/4 as time t goes to infinity. This improves the works of Selberg and da Silva (2017) [30] and Tesfahun (2017) [34]. Our strategy mainly relies on a higher order almost conservation law in Gevrey spaces, which is inspired by the I-method.  相似文献   
76.
We describe the previously unreported oxygen excess hexagonal antimony tungsten bronze with composition Sb0.5W3O10, in the following denoted as h-SbxWO3+2x with x=0.167, to demonstrate its analogy to classical AxWO3 tungsten bronzes. This compound forms in a relatively narrow temperature range between 580 °C<T<620 °C. It was obtained as a dark-blue polycrystalline powder, and as thin, needle-shaped, blue single crystals. h-SbxWO3+2x crystallizes in the hexagonal space group P6/mmm with the cell parameters a=7.4369(4) Å and c=3.7800(2) Å. The antimony and excess oxygen occupy the hexagonal channels within the network of corner-sharing WO6 octahedra. h-SbxWO3+2x has a resistivity of ρ300 K≈1.28 mΩ cm at room temperature, with little if any temperature-dependence on cooling. DFT calculations on a simplified model for this compound find a metallic-like electronic structure with the Fermi level falling within rather flat bands, especially around the Γ point.  相似文献   
77.
78.
A challenging deoxygenation of alkoxyl radicals from readily accessible alcohol derivatives was developed, affording facile synthesis of functionalized alkenes with good functional group tolerance under mild reaction conditions. Because alkoxyl radicals can easily undergo β-fragmentations or hydrogen abstractions, this new strategy for deoxygenation of alkoxyl radicals is highly valuable. Moreover, mechanistic studies revealed that the electron-neutral phosphine acts as the deoxygenation reagent.  相似文献   
79.
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D -shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil–rectangle shape transformation in solution.  相似文献   
80.
Imide-functionalized π-conjugated polymer semiconductors have received a great deal of interest owing to their unique physicochemical properties and optoelectronic characteristics, including excellent solubility, highly planar backbones, widely tunable band gaps and energy levels of frontier molecular orbitals, and good film morphology. The organic electronics community has witnessed rapid expansion of the materials library and remarkable improvement in device performance recently. This review summarizes the development of imide-functionalized polymer semiconductors as well as their device performance in organic thin-film transistors and polymer solar cells, mainly achieved in the past three years. The materials mainly cover naphthalene diimide, perylene diimide, and bithiophene imide, and other imide-based polymer semiconductors are also discussed. The perspective offers our insights for developing new imide-functionalized building blocks and polymer semiconductors with optimized optoelectronic properties. We hope that this review will generate more research interest in the community to realize further improved device performance by developing new imide-functionalized polymer semiconductors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号